MODULE DESCRIPTION

General

School	Geotechnical Sciences
Department	Forest and Natural Environment Sciences

Module Information

Title	Chemistry
Course Code	OPT.4
Level of Studies	Undergraduate Studies
Teaching Period	Winter
Attendance Type	Elective
Prerequisites	Not applied

Orientation	Weekly Hours		Year	Semester	ECTS
	Lectures	Laboratory work		Semester	
Landscape Architecture & Restoration	2	1	3	5	3

Faculty Instructor

Dr. Antonios N. Papadopoulos

Type of Module

Specific Foundation / Core

Knowledge Deepening / Consolidation

Mode of Delivery

Face to face

Distance learning

Digital Module availability

E-Study Guide

Departments Website

E-Learning

Language

	Teaching	Examination
Greek		V

English

Erasmus

The course is not offered to exchange programme students

Learning Outcomes

Upon successful completion of the course students will be able to:

- Describe the structure of atoms and how molecules and ions form
- Predict the stereochemical type of chemical molecules and ions.
- Know the structure and importance of complex compounds.
- Indicate the types of intermolecular forces and how it affects the physical state of bodies and their dissolution in various solvents.
- Identify the factors that affect the speed of reactions.
- They know basic thermodynamic concepts and how they are applied to chemical systems

List of General Competences

- Apply knowledge in practice
- Work autonomously
- Work in teams
- Work in an international context
- Work in an interdisciplinary team
- Respect natural environment
- Advance free, creative and causative thinking

Module Content (Syllabus)

Basic principles of chemistry. Chemical and physicochemical bonds. Ionized and non-ionized solutions. Electrolytic solutions. Electrolysis. Redox systems. Ionic balance in acid, base, salt so-lutions. Colloids. Principles of analytical chemistry, methods, instruments. Organic Chemistry: introduction to alcohols, carbonic and bi-carbonic acids, carboxyl and carbonyl compounds, ethers, nitrogen compounds, carbohydrates, phenols, aromatic hydrocarbons. Sugars, fats, oils, proteins, alkaloids, hormones, enzymes, resins and gums, tannins, natural product polymers.

Educational Material Types

- Book
- Notes
- Slide presentations
- Video lectures
- Multimedia
- Interactive exercises

Other:

Use of Information and Communication Technologies

- Use of ICT in Course Teaching
- Use of ICT in Laboratory Teaching
- Use of ICT in Communication with Students
- Use of ICT in Student Assessment

Module Organization

Course Activity	Workload (hours)
Lectures	26
Laboratory work	13
Field Trip/Short Individual Assignments	11
Independent Study	25
Total	75

Student Assessment Methods

- Written Exam with Multiple Choice Questions
- Written Exam with Short Answer Questions
- Written Exam with Extended Answer Questions
- Written Assignment
- Report
- Oral Exams
- Laboratory Assignment

Suggested Bibliography (Eudoxus and additional bibliography)

Brown, Lemay, Bursten, Murphy, Woodward, Stoltzfus (2015). Χημεία –Κεντρική Επιστήμη.Εκδόσεις Τζιόλα.

D.A. Skoog, D.M. West, F.J. Holler, S.R. Crouch (2014). Fundamentals of Analytical Chemistry, 9th ed, Brooks/Cole Publ., Belmont (CA), 2014, pp. 2-437.

Χανιωτάκης, Ν. και Μ. Φουσκάκη (2009). Ποσοτική Χημική Ανάλυση. Πανεπιστημιακές Εκδόσεις Κρήτης.